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Abstract The first part of these two companion papers has been devoted to the exten-
sion of Hausdorff moment problem to the sequences over integrals of Kronecker pow-
ers of an appropriate vector under a generating function in the kernel. The relations
between this generating function and weight function properties have been investi-
gated over there in a quite detailed manner. This second companion paper focuses on
the utilization of the “mathematical fluctuation theory” amenities in the construction
of approximations to the solutions of the expectation value dynamics of the quantum
dynamical systems. The fluctuation freee approximation matching with the classical
mechanical behaviour is followed by the first and then the second order fluctuation
approximations. Beside the well known “Energy Conservation Law”s counterparts in
these approximations of quantum expectation value dynamics are also presented.

Keywords Probabilistic evolution approach · Quantum mechanics · Ehrenfest
Theorem · Expectation value dynamics · Kronecker power series · Mathematical
fluctuation theory · Quantized Hamilton dynamics · Quantal cumulant dynamics
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1 Introduction

The first one of these two companion papers has a quite detailed introduction why this
study has been realized. In fact, the basic foci of these papers are (i) Expectation value
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dynamics for the evolution of quantum systems; (ii) Recently developed probabilistic
evolution approach (PEA), to be utilized in the solution of the ODEs for the expectation
values certain operators and their powers; (iii) Moment problem like issues for getting
integral representations for obtaining uniform convergence in Kronecker power series
appearing in (ii). The basic important issues related to PEA have been in the first
companion within a sufficiently comprehensive detailing although the interested reader
can find an abundance of papers [8–16] in scientific literature. The moment related
issues have been the core part of the companion paper. Important results are reported
there even in the theorem format. We are not going to refocus on these issues here.
However we highly recommend that the first paper should be kept close when this
paper is under consideration, to get quick references, since we do intend not to repeat
the related issues existing there but to refer certain formulae and paragraphs over there.

The main focus of this paper is to use a new concept of last decade, called the
mathematical fluctuation theory developed and have been used extensively in recent
years by M. Demiralp and his group members. This is done in a novel approach
by developing an expansion which is based on the ascending powers of certain so-
called fluctuation operators. This enables us to work in subspaces spanned by certain
operators of the set spanning the entire space used in the commutator algebra through
Poission brackets with the system’s Hamiltonian for the expectation value dynamics
of the quantum system under consideration.

After this brief introduction, the remaining part of the paper is organized as follows.
Section 2 gives a few core points of the mathematical fluctuation theory. The novel
approach which may be somehow called the “Theory of Fluctuation Expansions” is dis-
cussed in Sect. 3. Section 4 covers one of the most important property of the Theory of
Fluctuation Expansions, which proposes specific energy and fluctuation conservation
laws. The confirmation of the classical limit with the proposed method given in Sect.
5, while Sect. 6 deals with the phase or state space considerations. Section 7 is devoted
to the application of the proposed method to an example system, symmetric quartic
anharmonic oscillator, and the giving numerical results. The paper will be finalized
by some further concluding comments and remarks for future directions as usual.

2 The mathematical fluctuation theory

The mathematical fluctuation concept finds its roots in the noncommutativity of the
powering and expectation value taking operations. In a simple way we can emphasize
on the fact that “the expectation value of a function’s or variable’s square is not equal
to the square of its expectation value unless very specific conditions are satisfied. In
mathematical language

b∫

a

dxW (x) f (x)2 �=
⎛
⎝

b∫

a

dxW (x) f (x)

⎞
⎠

2

,

b∫

a

dxW (x) = 1 (1)

where W stands for a given weight function which can vanish only a finite number
of points in the interval, and, we implicitly assume that we are dealing with only
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real-valued entities. Otherwise, the expectation value should be redefined appropri-
ately. The relation between the integrals in (1) may not be immediately noticed at the
very first glance. However, each integral can be considered as the expectation value
of either f (x) or its square with respect to the unit constant basis function under the
weight W if and only if the integral of the weight function, which may be considered
as the expectation value of the unit operator, is 1. This is the reason why we impose
the unit integral condition over the weight function.

Equation (1) is given for continuous functions given on intervals. However, it is
possible to deal with the functions with discrete domains. In those cases, the weight
function should be replaced by an indexed entity which can take only positive values
for its all index values. On the other hand, there are certain circumstances where the
weight function remains positive for all independent variable values and depends on
certain parameters such that the weight function approaches to Dirac delta function
for some limit values of one or more number of these parameters. This Dirac delta
function is not a weight function and even not a function but distribution. It has a very
important feature that its integral after multiplying it by a continuous function produces
the function’s value evaluated at the point in the interval, defined by the support of the
delta function, as long as the delta’s support remains inside the integration interval.
The Dirac delta function is the only function having no fluctuation defined like in (1).

Equation (1) is not the only possibility to mention fluctuation. The following denu-
merable infinite number of equalities can be used to get practically utilizable fluctua-
tions.

φ
( f )
j ≡

b∫

a

dxW (x) f (x) j+1 −
⎛
⎝

b∫

a

dxW (x) f (x)

⎞
⎠

j

≡
〈

f̂ j
〉
− 〈

f̂
〉 j
,

j = 1, 2, . . . ;
b∫

a

dxW (x) = 1 (2)

where the superscript ( f ) is used to emphasize on the fact that the defined fluctuation
is with respect to the function f , and we have taken the fact that there is no fluctuation
in the zeroth and first powers. The left and right angle symbols are used to denote the
expectation value of the entity between them. The overhat symbol has been used to
mean that the base is an operator. In this case f̂ stands for the function multiplication
operator which multiplies its operand by the function value f (x). We could also define
the following fluctations for the independent variables

φ
(x)
j ≡

b∫

a

dxW (x)x j+1 −
⎛
⎝

b∫

a

dxW (x)x

⎞
⎠

j+1

≡
〈̂
x j

〉
− 〈̂x〉 j ,

j = 1, 2, . . . ;
b∫

a

dxW (x) = 1. (3)
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where x̂ multiplies its operand by x everywhere in the interval. The following equality
holds for a function f (x) as long as it remains analytic at every point of the considered
interval

〈
f̂
〉 = 〈 f (̂x)〉 =

b∫

a

dxW (x) f (x) =
∞∑
j=0

f j

b∫

a

dxW (x)x j =
∞∑
j=0

f j

〈
x j

〉
=

=
∞∑
j=1

f j+1φ
(x)
j + f (〈̂x〉) ,

b∫

a

dxW (x) = 1. (4)

If the weight function is sufficiently sharply located around an interval point then the
fluctuations can be considered rather small, and then, they can be omitted. What we
call this omittance case is “Fluctuationlessness Approximation” and write

〈 f (̂x)〉 ≈ f (〈̂x〉) (5)

This approximation equality may not be so strong because of it is defined to a rather
simple function, the unit constant function. However the above analysis can be repeated
over a finite number of basis function whose the very first one is the unit constant
function then the expectation values are replaced by the matrix representations of the
operators. Even though we do not intend to give all intermediate details we can write
the approximation equality as follows

M(Un)
(

f̂
) ≈ f

(
X(Un)

)
(6)

where

Un ≡ {
u j (x)

} j=n
j=1 , u1(x) ≡ 1x ∈ [a, b,], un(x) ≡ [u1(x) . . . un(x)] (7)

and u j functions are mutually orthogonal with unit norms. Beyond these the following
definitions are also valid

M(Un)
(

f̂
) =

b∫

a

dxW (x)un(x) f (x)un(x)
T ,

X(Un) =
b∫

a

dxW (x)un(x)xun(x)
T (8)

These are matrix equations and define n×n elements for each representation. Equation
(6) is also a matrix approximation equality over n×n elements. It becomes exact when
n goes to infinity as long as the set U∞ spans the Hilbert space where the expectation
values reside. Hence, the greater the n value the greater the approximation quality.
Equation (6) is the core subject of the so-called Fluctuationlessness Theorem which
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was conjectured and proven by M. Demiralp. It has been successfully utilized in many
practical applications by Demiralp’s group members [3,5–7]. It was first given for
univariate functions. Later, its multivariate version [4] has also been conjectured and
proven by M. Demiralp again.

Further investigations on mathematical fluctuations have also been realized and
some interesting findings were reported. We find this information as a gentle intro-
duction to “mathematical fluctuation theory” sufficient for our purposes here. The
next section contains for various detailing of fluctuation expansions in the expectation
value dynamics for quantum systems.

3 The theory of fluctuation expansion for quantum expectation value dynamics

Even though the basic philosophy we are going to use here were visited many times, but
generally for different purposes and within different point of views in the scientific
literature [17–19]; the fluctuationlessness approximation for the expectation value
dynamics of a quantum system produces a set of ordinary differential equations (ODE)
where the number of the unknown temporal functions is equal to the twice of the degree
of the freedom in the system under consideration. To be able to describe details we
first recall Ehrenfest Theorem [2] that connects classical mechanics and quantum
mechanics to certain extend.

We focus on a one dimensional system where the position variable x takes values
from the real number set. We will keep the presentation somehow general at the
beginning to be ready for dealing with any system which fits to the limitations of
the presentation. The system under consideration, is completely described by two
operators, momentum operator p̂ and position operator q̂ . The position operator’s
action on a function f (x) depending on the position variable x is defined as follows

q̂ f (x) ≡ x f (x), x ∈ (−∞,∞) (9)

where the position variable plays the role of the eigenvalue of the position operator.
For systematic consideration it is better not to confuse these two entities: position
operator (̂q) and the position variable (x). x plays the role of a dummy variable in the
mathematical sense while the position operator q̂ truely describes the positioning of
the particle in the system and the observed numerical values are related to this operator
through its expectation value.

The momentum operator p̂, on the other hand, is defined through the spatial differ-
entiation (the differentiation with res pect to position variable x). Its explicit definition
is given by

p̂ f (x) ≡ −i h̄
∂ f (x)

∂x
, x ∈ (−∞,∞) . (10)

Here and in (9) f (x) is assumed to be lying in the Hilbert space where the wave func-
tion of the system resides. Hence, it should satisfy the conditions for continuity and
square integrability over all position values. The symbol h̄ stands for the “Reduced
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Planck Constant” which is the ratio of the ordinary Planck constant to 2π . That con-
stant somehow enters the uncertainty and therefore probability issues. As it tends to
decrease the system under consideration behaves more classical mechanically and the
probability density tends to be sharp such that it approaches Dirac delta function type
structure in the vanishing Planck constant limit which is mathematically inaccessible
because of the nonzero true value of the Planck constant. However, the dimensional
entities may climb to the large values in comparison with the realm of the atoms and
molecules, by taking the system to the macro level where classical mechanical rules
govern the system.

The Hamilton operator Ĥ of the one dimensional quantum system is defined as
follows in terms of the momentum and position operators

Ĥ ≡ 1

2μ
p̂2 + V (q̂ ) (11)

whereμ denotes the mass of the system’s particle which can move only in a line where
the location is represented by x . The potential function V is assumed to be analytic
on the real axis of x except the infinity. The Hamilton operator has no explicit time
dependence, and therefore, it is autonomous. The Hamilton operator autonomy defines
a system which has no interaction with its environment. In other words, we confine
ourselves to the isolated systems.

The momentum and position operators are self-adjoint (Hermitian) as long as the
wave function of the system sufficiently rapidly decays to annihilate the residual terms
of the integration-by-parts operation. This Hermiticity implies the self-adjointness of
the Hamilton operator. The Hermiticity of the operators guarantee the real valued
ness of their expectation values. All operators considered for the quantum systems are
linear by definition and map from the Hilbert space where the wave function lies to
the same space.

The expectation value of an operator, which may explicitly vary in time and denoted
by ô(t) is defined as follows

〈̂o(t)〉 ≡ (ψ(t), ô(t)ψ(t))

≡
∞∫

−∞
dxψ(x, t)∗ô(t)ψ(x, t) (12)

where the first identity states that the expectation value of an operator is equivalent to
the innerproduct of the wave function’s image under the considered operator with the
wave function and the spatial dependence of the wave function has not been shown
explicit ly since x is the dummy variable of the innerproduct integration. The second
identity expresses the innerproduct more explicitly.

Despite the expectation value is based on the wave function we can avoid its explicit
utilization by forgetting the explicit structure of the definition but constructing an
ordinary differential equation (ODE). The temporal differentiation of the both sides of
the expectation value definition permits us to write the following equation by skipping
the intermediate steps
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d 〈̂o(t)〉
dt

= 〈{
Ĥ , ô(t)

}〉 +
〈

dô(t)

dt

〉
(13)

where the expression whose expectation value is taken at the right hand side’s first
additive term is well-known and called “Poisson Bracket”. Its explicit definition is
given below

{
Ĥ , ô(t)

} ≡ i

h̄

[
Ĥ ô(t)− ô(t)Ĥ

]
(14)

which is apparently self-adjoint because of the proportionality constant of the commu-
tator between Ĥ and ô(t), despite the commutator is anti Hermitian. The derivation of
(13) is not hard although we have skipped the details, and, is based on the Schrödinger
equation and its complex conjugate we have not given explicitly here.

Now, by skipping the intermediate steps again, we can obtain the following equa-
tions for the expectation values of the momentum and position operators.

d 〈 p̂ 〉 (t)
dt

= −〈V (̂q )〉 (t)
d 〈̂q 〉 (t)

dt
= 1

μ
〈 p̂ 〉 (t). (15)

The right hand side of the first one of these equations is not directly expressible in
terms of position and momentum operators only. Instead, the natural number pow-
ers of the position operator enter the expectation value if we use the Taylor series
expansion of the potential function. Since the expectation value of an integer power
of the position operator can not be expressed in terms of the position and momentum
operator expectation values only, the two equations in (15) do not form a complete
set of ODEs. This incompleteness urges us to construct more equations by involving
the expectation values of the position operator integer powers until the resulting set of
ODEs becomes complete. However this procedure ends in a denumerably infinite set of
ODEs as we have shown quite recently when we develop the “Probabilistic Evolution
Equations”[12–14]. On the other hand it is very well known that any given operator
related to the system under consideration approaches to the unit operator multiplied
by the expectation value of that operator at the classical limit where the probability
density approaches Dirac delta function like sharp single peak (or “distribution ” in
more mathematical terminology). This leads us to use not the operator’s itself but its
deviation from the unit operator multiplied by its expectation value. To this end, we
can write the following equality for an operator ô which is autonomous

ô = 〈̂o 〉 (t) Î + ϕ̂o(t), ϕ̂o(t) ≡ ô − 〈̂o 〉 (t) Î (16)

where the subscript o implies the relation to the operator ô. We call the operator ϕ̂o(t)
“Fluctuation Operator for ô ”. This decomposition presented here is the natural decom-
position and called “moving frame approach” in scientific literature [17,18], due to
the fact that the potential function will be presented with a series expansion around
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a point. This series expansion is time dependent because of the time dependence of
the fluctuation operator. Thus, it is natural to select expansion as average position at
the current time. However, this operator decomposition is not unique. This decom-
position can also be considered as the projection of the operator under consideration
to two different subspaces of the all space. This decomposition can be defined by an
optimization algorithm that reduces the magnitude of the fluctuation in the evolving
time.

We can now expand the Potential Function’s first derivative over the position opera-
tor around the unit operator multiplied by the expectation value of the position operator
as follows

V ′ (q̂) =
∞∑
j=0

( j + 1)Vj+1 (〈̂q 〉 (t)) ϕ̂q(t)
j (17)

where the zero power of the fluctuation operator is assumed to be unit operator by
following the operator algebraic convention on operators.

By using the linearity in the expectation value taking operation we can write

〈
V ′ (q̂ )

〉
(t) =

∞∑
j=0

( j + 1)Vj+1 (〈̂q〉 (t))
〈
ϕ̂q(t)

j
〉

(18)

where we have not shown the expectation value dependence on time when it is unnec-
essary. The convergence of the above series is one of the key points of the presented
method. For the potentials that converge slowly , such as exponential potential like
Morse potentials with certain parameters, more terms are needed for a prescribed
quality. This certainly increases of the computational effort. On the other hand, for the
potentials having singular points in the computational domain this series may diverge
that lead to divergence and/or non-stable solutions of the presented method. To be able
to overcome this issues, different types of series expansions which takes polynomials
as the basis set such as Chebyshev polynomials can be considered to accelerate the
convergence rate. For the divergent potentials, Laurent series can be considered with
the redefinition of the studied operator space. Further details are given in the following
sections.

To proceed, it is possible to write the following equations, recalling back the above
series expansion and utilizing the Ehrenfest Theorem in Heisenberg picture.

d 〈̂s〉 (t)
dt

=
∞∑
j=0

H j

〈̂
s⊗k

〉
, j = 0, 1, 2, . . . (19)

Here, H j denotes an n ×n j dimensional rectangular matrix and its dimension changes
depending on the system under consideration and the defined system vector ŝ. n is the
number of operators included in ŝ. The structure of the system vector and thus the
number of elements can be changed to be able to get the desired structure in the
evolution matrix as described in the previous chapter. Another important point is that

123



2302 J Math Chem (2014) 52:2294–2315

these matrices are time invariant. Thus, the above system of equations are linear in
expectation value of ŝ and its Kronecker powers. Taking this linear set of ODEs in one
hand, we will now utilize the “Theory of Fluctuation Expansion”. For this purpose,
we first define “fluctuation vector” using previously defined operator decomposition
as follows.

φ̂(t) = ŝ − 〈̂s〉 (t )̂I (20)

ŝ = 〈̂s〉 (t )̂I + φ̂(t) (21)

In these equations ŝ denotes the system vector composed of the operators describing
the system under consideration in PEA perspective; while φ̂(t) stands for the portions
of these operators, which causes fluctuations. As can be explicitly noticed from these
equations, the expectation value of the operator φ̂(t) during the entire time interval
where the dynamics is investigated is zero.

〈
φ̂(t)

〉 = 0 (22)

The efficiency of the decomposition in (21) will be shown in the coming steps as we
proceed. However, this does not mean that the identity in (21) is the only possible
identity. The other decompositions whose first components have the value of the
expectation value, 〈̂s〉 (t) while the second component is an operator whose expectati
on value vanishes.

More complicated ideas can be brought to the scene for the above mentioned
decomposition. However, the increasing complications the growing efforts to pro-
ceed efficiently. For instance, different probability distributions may be involved in
the procedure and produce different efficiencies. The present approach has been cho-
sen to expect better efficiency by keeping the zero reduced Planck constant limit as
the classical mechanics.

Before using these notions in the expectation value dynamical equations, we need
to investigate how the expectation values of the fluctuation operators are reflected to
the expectation values of the system vector’s Kronecker powers. The first step to this
end is to focus on the Kronecker square expectation value of the system vector.

ŝ⊗2 = 〈̂s〉 (t)⊗2̂I + 〈̂s〉 (t )̂I ⊗ φ̂(t)+ φ̂(t)⊗ 〈̂s〉 (t )̂I + φ̂(t)⊗2 (23)〈̂
s⊗2

〉
(t) = 〈̂s〉 (t)⊗2 +

〈
φ̂(t)⊗2

〉
(24)

We call the case where all terms coming from fluctuations are neglected, “Fluctua-
tionlessness Approximation”. Even though this is just for the Kronecker square of
the system vector expectation value. However, it can be extended to the all positive
integer Kronecker powers. By skipping the intermediate details we can write the more
general extended equation as follows

〈̂
s⊗ j

〉
(t) ≈ 〈̂s〉 (t)⊗ j , j = 2, 3, . . . (25)
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This approximation leads to the classical limit equations of motions what we called
“fluctuationless limit”.

d 〈̂s〉 (t)
dt

=
∞∑
j=0

H j 〈̂s〉 (t)⊗ j = R0(〈̂s〉 (t)), (26)

After all these steps, to be able to mathematically describe the full approximation of
the proposed algorithm, first we will recall an important property of the Kronecker
product

ŷ ⊗ x̂ = �(̂x ⊗ ŷ) (27)

where� denotes the unitary permutation matrices whose columns and rows are appro-
priately chosen unit vectors. Using this property, the Binomial Expansion of the nth
Kronecker power of the sum of two vectors can be explicitly written in the following
form.

(̂x + ŷ)⊗ j =
j∑

k=0

�k (̂x⊗k ⊗ ŷ⊗ j−k) (28)

Utilizing the above equations, Poisson brackets for the fluctuation vector and the
conservations rules which will be discussed in the following chapter we get the fol-
lowing linear systems of ordinary differential equations.

d 〈̂s〉 (t)
dt

=
∞∑
j=0

R j (〈̂s〉 (t))ϕ j (t)

dϕ j (t)

dt
=

∞∑
k=0

ρ j,k(〈̂s〉 (t))ϕk(t)

j = 1, 2, 3, . . . (29)

In the above equations the term ϕ j (t) must be considered as follows

ϕ j (t) =
〈
φ̂(t)⊗ j+1

〉
(30)

The Eq. (29) is the hearth of the proposed method. ODEs written for the fluctuation
terms are denumerably infinite. One way to deal with these equation is the PEA and
its given in the accompanying paper [1]. Another way to deal with these equations
are truncation approximations. For instance, the zeroth order truncation so called
fluctuationless limit corresponds to the classical limit. The accuracy will be better when
the more terms are involved in the truncation approximants. The convergence rate will
depend on the system under consideration and strongly related to the convergence rate
of the potential function of the system. Due to the probabilistic nature of the quantum
systems, we are unable to discuss the uniform convergence. The convergence is in a

123



2304 J Math Chem (2014) 52:2294–2315

strong correlation with the width of the initial wave packet and its velocity spreadth.
If the the width and the velocity is small, then the convergence and the accuracy of
the presented method will be good in a large time interval. But if the width and spread
velocity is not small enough, the method will give good approximations only in the
very small time intervals. But truncating in large number of terms will overcome this
issue within an asymptotic convergence.

4 Conservation rules via the theory of fluctuation expansion

This section covers the conservation laws in fluctuation expansions for the symmetric
quartic anharmonic quantum oscillator. We are going to keep the investigations at
general level as much as possible. The basic idea for this investigation is the fact that the
expectation value of the Hamilton operator remains constant during the entire evolution
of the system as long as the Hamiltonian is autonomous. The time variation of the
Hamilton operator’s expectation value can be given through the following equations.

d
〈
Ĥ
〉

dt
= 〈{

Ĥ , Ĥ
}〉 = 0

〈
Ĥ
〉 = 1

2μ

〈
p̂2

〉
+ 〈V (q̂)〉 = H0 (31)

H0 denotes a scalar in the last equation of (31) For further proceeding we need to focus
on the momentum and position operators and related fluctuation operators. In fact, our
main purpose is to determine the expectation values of these entities and then to find
the evolution of the quantum dynamical systems via probabilistic evolution approach.

Φ̂p ≡ p̂ − 〈 p̂〉 Î

Φ̂q ≡ q̂ − 〈̂q〉 Î (32)

We need to reemphasize on the fact that the expectation values of the fluctuation
operators vanish. The other important issue is the possibility of decomposing a given
operator to two components, in any way, as long as the expectation value of whose first
component should match the expectation value of the operator under consideration
while the second component’s expectation value vanishes. The first preferable way is
the development a method such that the first approximation aims at the fluctuationless
limit while the other approximations gradually involves the ascending degrees of the
fluctuations as the corrections. In this perspective some inspiration can be taken Wigner
function related issues. The series expansion of the potential function can be given as
follows

〈V (q̂)〉 =
∞∑
j=0

v j

〈̂
q j

〉
(33)

The explicit structure of q̂ j operators can be written as follows in terms of fluctuation
operators
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q̂ j = (〈̂q〉 Î + Φ̂q
) j =

j∑
k=0

(
j

k

)
〈̂q〉k Φ

j−k
q (34)

where we can define

ϕ j−k−1,q j−k (t) =
〈
Φ

j−k
q

〉
(35)

and use in (33) to get the following result

〈V (q̂)〉 =
∞∑
j=0

( ∞∑
k=0

(
j + k

k

)
vk 〈̂q〉k

)
ϕ j−1,q j (t). (36)

The expectation value of the momentum operator square in terms of the fluctuation
operators as follows

〈
p̂2

〉
= 〈 p̂〉2 + ϕ1,p2(t) (37)

If all these findings are used in the second equality of (31) then the following conser-
vation law can be written

1

2μ
〈 p̂〉2 + V (〈̂q〉)+ ϕ1,2 +

∞∑
j=0

V ( j+1)(〈̂q 〉)
( j + 1)! ϕ j,0 = H0 (38)

where

ϕ j,k ≡
〈

1

2
Φ̂k

pΦ̂
j+1−k

q + Φ̂
j+1−k

q Φ̂k
p

〉
, j = 1, 2, . . . ; k = 0, 1, . . . , j + 1 (39)

should be kept in mind.
By using these results it is possible to construct conservation laws, which are valid

for all time instances during the system’s evolution, over the higher degree fluctuation
terms. We find this analysis sufficient here.

5 Fluctuation free approximation

Equation (18) takes the following form when all expectation values over all fluctuation
(the terms corresponding to the cases where j is positive) are ignored

〈
V ′ (q̂ )

〉
(t) = V ′ (〈̂q 〉 (t)) (40)

which affects (15) as follows by removing the incompleteness between the ODEs via
fluctuationlessness approximation
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d 〈 p̂ 〉 (t)
dt

= −V (〈̂q 〉 (t))
d 〈̂q 〉 (t)

dt
= 1

μ
〈 p̂ 〉 (t). (41)

We can now define

ξ(t) ≡ 〈 p̂ 〉 (t), η(t) ≡ 〈̂q 〉 (t) (42)

and rewrite (41) as follows

ξ̇ = −V ′ (η) , ξ(0) = ξ0

η̇ = 1
μξ, η(0) = η0

. (43)

which can be converted into a single but second order ODE with accompanying initial
conditions

η̈ = − 1

μ
V ′ (η) , η(0) = η0, η̇(0) = 1

μ
ξ0 (44)

If the first equation of (44) is multiplied by η̇ and then temporally integrated we obtain

μ

2
η̇2 + V (η) = 1

2μ
ξ2

0 + V (η0) ≡ H0 (45)

which states the energy conservation and hence we denoted the integration constant
by H0 to imply the beginning value of the Hamilton operator expectation value at
fluctuation free level.

Equation (45) can be further handled by the separation of variables and this results
in

F (η) ≡
η∫

η0

dη1√
2H0
μ

− 2
μ

V (η1)

= t (46)

where we assumed that the integration interval does not contain any branch point or
some other singularity of the square root in the denominator. This equality states t in
terms of η and it is possible to use inverse function of F as long as it exists to express
η in terms of t .

6 Phase space or state space considerations

In classical dynamics the entities describing the system are the position and momentum
variables which are temporally varying. The main focus is the determination of these
entities. This is an explicit way to find the dynamical behavior of the considered system.
However, this task may not be so easy as it appears at the first glance, depending
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on the mathematical complications of the governing equations. One can avoid this
task to get more global dynamical feature by using rather qualitative or geometrical
considerations. To this end, a multidimensional space where each point’s coordinates
are determined by the system variables, positions and momenta, is defined. This is
called “phase space” where the state of the system is represented by a point which
moves in this space as the time evolves. The location of these points composes a
curve which is called “trajectory”. In the framework of system theory, the position
and momentum discrimination may not be necessary and all temporal unknowns are
considered equivalent to characterize the system and their role dominancy can be
understood either after the solution of the dynamical equations or by looking their
relative changes. So, these entities which are called “state variables” span again a
space which is almost identical to the phase space. This space is called “state space”.

It is generally possible to find whether the system under consideration, evolves in
a periodical motion (somehow metastability, vibration), or explodes (instability), or
decays after initial transitions at the infinite limit of time.

The periodical motions generally correspond to the closed or asymptotically closed
trajectories in phase or state space even though certain open curves like parabolas which
can in fact be considered as the closed curves in not finite but infinite regions may
allow periodical motions. The closed curves correspond to certain conservation rules
like energy conservation in classical dynamics. The asymptotically closed trajectories
describe the motion of the systems which interact with their environment at the begin-
ning of the evolution and then, after certain finite time interval the system approaches
periodical motion. In this work we will focus on a system which will behave always
periodical. The following equation can be derived from (45) and is the mathematical
statement of the energy conservation for a one dimensional quantum system at the
classical limit

1

2μ
ξ(t)2 + V (η(t)) = H0 (47)

where the time dependence through ξ and η is deliberately shown explicitly to empha-
size on the fact that this conservation rule remains valid for all time instances during
the evolution. H0 stands for the initial value of the Hamilton function H(ξ, η) which
produces the Hamilton operator when its arguments are replaced by the momentum and
position operators respectively. The value of H0 depends on the Hamilton function’s
structure. It may be positive or positive semi-definite for all possible values of its argu-
ments when the Hamilton operator is positive definite. The Hamilton operator’s kinetic
energy term which is the momentum square divided by the twice of the particle’s mass
is certainly nonnegative. However, the potential function may produce negative val-
ues depending on the potential structure. If it is nonnegative definite then we become
enabled to show that the potential function needs to be bounded from above so does
the position variable η(t). Equation (47) can be used to get these bounds, depending on
the functional dependence of the potential function on the position variable. Equation
(47) implies that

V (η(t)) ≤ H0. (48)
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This may or may not produce a finite bound on η(t) depending on the η dependence
of the potential function.

If the potential function is not positive or positive semi-definite then the energy con-
servation equation may create certain singularities, especially when ξ(t) is attempted
to be expressed in terms of η(t). Because of the square root operation a branch point
may arise to create a turning point where ξ(t) turns out to be imaginary. This is very
possibly originated from the modelling of problems generally. If it happens then it
is better to revise the model for the system under consideration appropriately. In this
work, a positive semi-definite and monotonous potential function will be taken to the
focus.

7 Case study: one dimensional symmetric quartic quantum anharmonic
oscillator

7.1 Classical limit: the fluctuation free approximation

We focus on a system composed of just a single particle with a mass μ under the
potential defined by the following equation

V (x) ≡ k1

2
x2 + k2

4
x4, x ∈ (−∞,∞) ,

k1, k2 > 0 (49)

which implies

k1

2
x2

max + k2

4
x4

max = H0 (50)

whose only acceptable root amongst the existing four zeroes is explicitly given below

xmax =
√

k2
1 + 4H0k2 − k1

k2
(51)

This means that

η(t) ∈
[

−
√

k2
1+4H0k2−k1

k2
,

√
k2

1+4H0k2−k1

k2

]
,

ξ(t) ∈
[
−√

2μH0 ,
√

2μH0

]
(52)

which imply that the position expectation value oscillates between the endpoints of
this interval so does the momentum expectation value between its interval endpoints.
These facts and the equations in (43) show that the energy conservation is the trajectory
on which the state point moves in a periodical motion.
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The function F (η) takes the following integral representation form

F (η) ≡
η∫

η0

dη1√
2H0
μ

− k1
μ
η2

1 − k2
2μη

4
1

(53)

which can be related to the elliptic integrals via appropriate change of integration
variable. Hence, this function does not have an explicit exact form but can be expressed
in terms of well-known functions. We do not intend to get into more details of this
issue here.

7.2 Second order fluctuation expansion

This subsection is devoted to an example of third order fluctuation approximation for
the symmetric quartic anharmonic oscillator. For this purpose, first we will construct
equations of motions using Ehrenfest theorem.

d 〈 p̂ 〉 (t)
dt

= −k1 〈̂q 〉 (t)− k2

〈
q̂3

〉
(t)

d 〈̂q 〉 (t)
dt

= 1

μ
〈 p̂ 〉 (t) (54)

Since the expectation value of the cube of position operator is a new unknown, the
above equations are not close and hence not solvable either numerically or analytically.
But this term can be approximated using the Theory of Fluctuation Expansion as
follows.

〈
q̂3

〉
(t) ≈ 〈̂q 〉 (t)3 + 3 〈̂q 〉 (t)ϕ1,3 (55)

This approximation includes new fluctuation term and three new differential equations
can be constructed from the energy conservation law that dictates us that total energy
of the same order fluctuation expansion terms is conserved. The final closed set of
ODEs is as follows.

d 〈 p̂ 〉 (t)
dt

= −k1 〈̂q 〉 (t)− k2(〈̂q 〉 (t)3 + 3 〈̂q 〉 (t)ϕ1,3)

d 〈̂q 〉 (t)
dt

= 1

μ
〈 p̂ 〉 (t)

dϕ1,1 (t)

dt
= −(k1 + 3k2 〈̂q 〉 (t)2)ϕ1,2

dϕ1,2 (t)

dt
= −2(k1 + 3k2 〈̂q 〉 (t)2)ϕ1,3 + 2

μ
ϕ1,1

dϕ1,3 (t)

dt
= 1

μ
ϕ1,2 (56)
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Accompanying initial conditions of the above set of ODEs can be constructed from
the initial wave packet. The wave function characterizes the evolution in the quantum
system. For simplicity, our quantum system is composed of a single particle and the
degree of freedom is just one. Gaussian Wave Packet where the initial distribution’s
function form is given in position space, as follows

ψ(x, 0) = 1

(2πσ 2
x )

1/4 eip0x/h̄e−(x−x0)
2/4σ 2

x (57)

and/or in momentum space as follows

φ(p, 0) = 1

(2πσ 2
p)

1/4 e−i(p−p0)q0/h̄e−(p−p0)
2/4σ 2

p (58)

where h̄ stands for the reduced Planck’s constant which is taken to be 1 in this study
for the sake of simplicity. x and p are corresponding to the position and momentum
of the system. x0 and p0 are given initial values of the position and momentum which
are randomly determined for the computational experiments. Moreover, σx and σp

are the variances of the position and the momentum operators expectation values and
satisfy the Heisenberg uncertainty relation.

σxσp ≥ h̄

2
(59)

Using the informations above, the accompanying initial conditions for the Gaussian
initial wave packet can be constructed as follows.

〈̂q 〉 (0) = q0, 〈 p̂ 〉 (0) = p0〈
ϕ̂1,1

〉
(0) =

〈
p̂2

〉
(0)− 〈 p̂ 〉 (0)2 = mh̄w

2〈
ϕ̂1,2

〉
(0) = 1

2
[〈 p̂q̂ 〉 (0)+ 〈̂q p̂ 〉 (0)− 2 〈 p̂ 〉 (0) 〈̂q 〉 (0)] = 0

〈
ϕ̂1,3

〉
(0) =

〈
q̂2

〉
(0)− 〈̂q 〉 (0)2 = h̄

2mw
(60)

7.3 Numerical experiments

The ODEs constructed in previous subsection can be solved numerically with any suit-
able method. For the solution, we have used Matlab ode45 routine that uses explicit
Runge–Kutta method. The mass of the particle and the reduced Planck constant con-
sidered to be one. The constants k1 and k2 are considered to be one to guarantee the
periodic motion. The quantum mechanical simulations are done with the split opera-
tor method using Strang split together with the FFT algorithm with 100 time step at
most. The Fig. 1 shows the expectation values of the position changing with time. As
clearly seen in the figure, the proposed method produces results in a well agreement
with the quantum mechanical simulation in small time interval, even though only the
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Fig. 1 Comparison of the expectation value of the position operator changing with time (σx = 0.5,
h̄ = 1,m = 1, q0 = 1, p0 = 1)

Fig. 2 The expectation values of the fluctuation operators (σx = 0.5, h̄ = 1,m = 1)

second order fluctuation terms are considered. The deviation from the classical limit
is also successfully modeled in small time interval. The Fig. 2 shows the expectation
values of second order fluctuation operators. The magnitude of the expectation value
of the fluctuation operators gets larger as the time evolves due to the fact that the wave
function spreads as time passes. The Fig. 3 shows the phase space trajectory of the
particle under consideration. In the classical limit, it gets a closed shape as desired
but the quantum mechanical corrections by the mathematical theory of fluctuation
expansion deviates this closed shape. Moreover, due to energy conservation between
the same ordered fluctuation operators the trajectory is still closed. As clearly seen
from the figure, the particle moves on the quantum (not classically allowed) region as
time evolves. This is because of the fact that the presented method can take quantum
effects into consideration.

8 Future perspective: pseudo expectation values

It is important to note that primary step of the presented method is series expansion
of the potential function of the system under consideration. However, Taylor series
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Fig. 3 The phase space of the expectation values of the position and momentum operators (σx = 0.5,
h̄ = 1,m = 1)

expansion can be used for the analytical potential functions in the studied domain.
This series may not converge at finite number term truncations. Moreover, even if
this series are convergent, the rate of the convergence may be very slow that causes
increasing computational complexity of the presented method. In addition, there are
some quantum mechanical systems which have potentials with singularities at finite
argument values. Thus, it may be quite necessary to use Laurent series expansion.
In that case, it is impossible to study directly with the position and the momentum
operators. But, it is possible to study the function of these operators and to find the
expectation values of those functions of operators such that the resulting value inverted
by using the function under consideration if possible. The obtained entity may be called
pseudo expectation values. This is under an intense study in the group of the second
author. Another way to deal with this issue is to define a new “weighted expectation
value” which can be explicitly given as follows.

〈̂o(t)〉 ≡
∞∫

−∞
dxψ(x, t)∗w(x, t)∗o(t)w(x, t)ψ(x, t) (61)

where w(x, t) is the appropriately chosen weight function and satisfies the following
property.

∞∫

−∞
dxψ(x, t)∗w(x, t)∗w(x, t)ψ(x, t) = 1 (62)

This approach can also be used to suppress both divergence of the series expansion of
the potential function and to accelerate the convergence rate of the series expansion
of the potential function. This topic is now under a detailed intense study via a PhD
project conducted by Metin Demiralp.

Another way to deal with the aforementioned issue is to define a weighted system
vector as follows.
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s ≡
[
w(H)pw(H)
w(H)qw(H)

]
(63)

for the example system vector shown below

s ≡
[

p
q

]
(64)

using the fact that

{H, w(H)} = 0 (65)

It can be quite necessary to truncate fluctuation expansion in large orders and this may
lead divergence in the solution of the ODEs. This approach can be used to suppress
this type of divergence due to the fact that momentum operator is unbounded. When
this approach is used, the inverse transformation is needed to gather the knowledge
of the desired expectation values of position and momentum operators. This inverse
transformation may not always be well defined depending on the structure of the
chosen weight function. Inspite of this drawback, it is still possible to extract physical
information about the system under consideration from this type of pseudo expectation
values.

Since, the approximation for the general type of potentials is very crucial for the
presented method, the fluctuation expansion can be done around an optimized point.
Moreover, different kinds of polynomial approximation schemes can also be consid-
ered. All these prospects can be considered as future studies even though some of them
have recently been located to the loom (if the statement fits).

9 Conclusion

This study is the second part of the total framework which is called PEA to the quantum
mechanical operators. The main focus of this study is to do quantum mechanics without
explicitly solving Schrödinger equation but directly modeling the expectation values
of the quantum mechanical operators. This is achieved conceptually in these papers.

While the first part of this couple of papers explores the Lie algebraic group closed
in infinite dimension, this second part of the study introduces the mathematical theory
of fluctuation expansion to be able to study the Lie algebraic group in finite dimension.
The detailed discussion and related mathematical proof are given in this study. Also
the theory is demonstrated with an example system, symmetric quartic anharmonic
oscillator in one dimension composed of single particle. Some further developments
of the theory is also discussed in this paper.

One of the most important further future direction is to explore the convergence
properties of the method, when the studied operator space gets larger. As shown in
the first paper, when this space is infinite only the asymptotic convergence is possible.
Thus, the convergence is not guaranteed and even if it is obtained, it may or may not
be uniform.
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Another further future direction is to use this method to model the quantum mechan-
ical effects such as tunneling and quantum zero point energy. The last but not the least,
state to state or state to costate transition amplitudes appearing in the quantum optimal
control theory is a candidate for the future application areas.

The method presented here is the one of the most strongest candidates of the studies
about the correspondence between the classic and quantum mechanics. And, to the
best of our knowledge, the method presented here is the most systemized approach
due to the usage of Kronecker product and thus the easiest one to be implemented
amongst the others.
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